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Sepsis: life-threatening organ dysfunction caused by a
dysregulated host response to infection

Our individual response to infection is highly
heterogeneous and not well captured by sepsis as a
clinical syndrome
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Complexity of sepsis pathophysiology, incomplete
knowledge

Organ dysfunction and risk of death results from a ‘igf
maladaptive host immune response to infection

Currently, clinical trials and development of targeted
immunomodulatory therapies is limited by
incomplete understanding of the drivers of sepsis and
how to more effectively stratify patients

Singer M et al. 2016 The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315, 801-10; Marshall JC. 2014 Why have clinical

trials in sepsis failed? Trends Mol Med 20:195-203; van der Poll et al. 2021 The immunology of sepsis. Immunity, 54, 2450-2464.



Sepsis: moving towards a more precision medicine approach

R E C’I:‘V E RY The more homogenous severe COVID-19 disease shows potential for

STy P — immunotherapy in extreme response to infection

A precision medicine approach based on patient
characteristics informative for one or more
pathophysiological mechanisms/ processes/ states
predominant in a given patient (occurring or predicted
to occur) that are therapeutically relevant for that
patient at the time of assessment and clinical decision
making to guide targeted intervention

Delivering the right treatment
to the right patient at the
right time in critical iliness

Horby et al., Dexamethasone in Hospitalized Patients with Covid-19. N Engl J Med, 2021. 384, 693-704



Achieving greater precision within sepsis syndrome: terminology

* subphenotypes (subgroups of patients) based on patient characteristics, clinical and or molecular (-omic, multi-
omic) which individually may be informative for a specific state but that state may only be identifiable by
looking, for example in the plasma proteome

* endotype = where subphenotype (subgroup) characteristics/biomarkers define or associate with a specific
pathophysiological mechanism

* treatable trait = where the subphenotype (subgroup) characteristics/biomarkers identify a group of patients
with a specific pathophysiological derangement and predictable response to a specific therapy

Maslove DM et al (2022). Redefining critical illness. Nature Medicine 28, 1141-1148



Precision medicine in sepsis

Long term goal: a disease classification based on pathophysiology, with patient groupings (classifiers) that will likely
span current overlapping clinical syndromic definitions (sepsis, ARDS, AKI...)

Progress....

JAMA | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

e currently mainly uni-modal, single lens view (subphenotyping based on Derivation, Validation, and Potential Treatment Implications
clinical/laboratory features, circulating cytokines, single —omic viewpoints)

of Novel Clinical Phenotypes for Sepsis

Christopher W. Seymour, MD, MSc; Jason N. Kennedy, MS; Shu Wang, MS; Chung-Chou H. Chang, PhD; Corrine F. Elliott, MS; Zhongying Xu, MS;
Scott Berry, PhD; Gilles Clermont, MD, MSc; Gregory Cooper, MD, PhD; Hernando Gomez, MD, MPH; David T. Huang, MD, MPH;

John A. Kellum, MD, FACP, MCCM: Qi Mi, PhD; Steven M. Opal, MD; Victor Talisa, MS; Tom van der Poll, MD, PhD; Shyam Visweswaran, MD, PhD;
Yoram Vodovotz, PhD; Jeremy C. Weiss, MD, PhD; Donald M. Yealy, MD, FACEP; Sachin Yende, MD, MS; Derek C. Angus, MD, MPH

JAMA. 2019;321(20):2003-2017. doi:10.1001/jama.2019.5791




Precision medicine in sepsis

Long term goal: a disease classification based on pathophysiology, with patient groupings (classifiers) that will likely

span current overlapping clinical syndromic definitions (sepsis, ARDS, AKI...)

Progress....

* currently mainly uni-modal, single lens view (subphenotyping based on clinical/laboratory features, circulating

cytokines, single —omic viewpoints)

* unsupervised approaches (clustering) powerful but inconsistency within molecular phenotyping across studies
— different subphenotypes, platforms, variable power, covariates; progress towards defining endotypes and

treatable traits remains limited

Genomic expression profiling across the pediatric systemic
inflammatory response syndrome, sepsis, and septic shock spectrum*
Hector R. Wong, MD; Natalie Cvijanovich, MD; Geoffrey L. Allen, MD; Richard Lin, MD; Nick Anas, MD;

Keith Meyer, MD; Robert J. Freishtat, MD; Marie Monaco, BSN; Kelli Odoms, BS; Bhuvaneswari Sakthivel, MS;
Thomas P. Shanley, MD; for the Genomics of Pediatric SIRS/Septic Shock Investigators

Crit Care Med 2009 Vol. 37, No. 5

Prospective clinical testing and experimental validation
of the Pediatric Sepsis Biomarker Risk Model

Hector R. Wong'"?*, J. Timothy Caldwell', Natalie Z. Cvijanovich?, Scott L. Weiss*,

Julie C. Fitzgerald®, Michael T. Bigham®, Parag N. Jain®, Adam Schwarz’, Riad Lutfi®,

Jeffrey Nowak®, Geoffrey L. Allen'®, Neal J. Thomas'', Jocelyn R. Gr 1I'?, Torrey Baines'>,
Michael Quasney'#, Bereketeab Haileselassie'®, Christopher J. Lindsell'®

Sci. Transl. Med. 11, eaax9000 (2019)

Genomic landscape of the individual host response and

outcomes in sepsis: a prospective cohort study

Emma E Davenport, Katie L Burnham*, Jayachandran Radhakrishnan®, Peter Humburg, Paula Hutton, Tara C Mills, Anna Rautanen,
Anthony C Gordon, Christopher Garrard, Adrian V S Hill, Charles ) Hinds, Julian CKnight

Lancet Respir Med 2016 4:259-71

Unsupervised Analysis of Transcriptomics
in Bacterial Sepsis Across Multiple Datasets
Reveals Three Robust Clusters

Timothy E. Sweeney, MD, PhD*'% Tej D. Azad" Michele Donato, PhD'3 Winston A. Haynes'%

Thanneer M. Perumal, PhD* Ricardo Henao, PhD*?; Jestis E Bermejo-Martin, MD, PhD®
Raquel Almansa, PhD¢ Eduardo Tamayo, MD, PhD% Judith A. Howrylak, MD’; Augustine Choi, MD%

Grant P. Parnell, PhD?; Benjamin Tang, MD*'%; Marshall Nichols, MS*; Christopher W. Woods, MD*!*!4;

Geoffrey S. Ginsburg, MD, PhD* Stephen F. Kingsmore, MD, DSc'; Larsson Omberg, PhD’;
Lara M. Mangravite, PhD* Hector R. Wong, MD'**7; Ephraim L. Tsalik, MD***4%
Raymond J. Langley, PhD'; Purvesh Khatri, PhD'*

Critical Care Medicine 2018 ¢ Volume 46 * Number 6

Predicting sepsis severity at first clinical presentation:
The role of endotypes and mechanistic signatures

Arjun Baghela,** Olga M. Pena,” Amy H. Lee,° Beverlie Baquir,” Reza Falsafi,” Andy An,® Susan W. Farmer,® Andrew Hurlburt,?
Alvaro Mondragon-Cardona,® Juan Diego Rivera,“’ Andrew Baker,? Uriel Trahtemberg,® Maryam Shojaei,"
Carlos Eduardo Jimenez-Canizales,*' Claudia C. dos Santos.® Beniamin Tana," Hialmar R. Bouma,” Gabriela V. Cohen Freue* and

Robert E.W. Hancock™* R .
eBioMedicine 2022;75:103776

Classification of patients with sepsis according to blood
genomic endotype: a prospective cohort study

Brendon P Scicluna, Lonneke A van Vught, Aeilko H Zwinderman, Maryse A Wiewel, Emma E Davenport, Katie L Burnham, Peter Nirnberg,
Marcus | Schultz, Janneke Horn Olaf I Cremer Marc | Bonten. Charles | Hinds, Hector R Wong, Julian C Knight, Tom van der Poll, on behalf of the

WARS consortium® Lancet Respir Med 20 http://dx.doi.org/10.1016/




Precision medicine in sepsis
Long term goal: a disease classification based on pathophysiology, with patient groupings (classifiers) that will likely
span current overlapping clinical syndromic definitions (sepsis, ARDS, AKI...)

Progress....
* currently mainly uni-modal, single lens view (subphenotyping based on clinical/laboratory features, circulating
cytokines, single —omic viewpoints)

* unsupervised approaches (clustering) powerful but inconsistency within molecular phenotyping — different
subphenotypes reported, different platforms, variable power, covariates; progress towards defining endotypes
and treatable traits remains limited

* need for standardization of terminology, goals, collaborative systematic approaches; multi-modal data
integration; high quality mechanistic work; addressing in clinical trial setting; feasibility of point of care testing....

* here | describe our work with sepsis response signatures and progress towards a sepsis endotype

Structure of talk:

» Whole blood leukocyte transcriptomics identifies sepsis response signatures
» An SRS quantitative score applicable to a variety of infections

» Towards a mechanistic basis for SRS




Transcriptomics-led approach defines sepsis subphenotypes associated with response state and outcome
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UK Genomic Advances in Sepsis (GAInS) study

Unsupervised hierarchical cluster analysis 10% most variable genes in whole blood
leukocytes from sepsis due to community acquired pneumonia (discovery cohort n=265)

Sepsis response signatures. SRS1: expression signatures of endotoxin tolerance, T-cell
exhaustion, down-regulation of HLA class Il
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Davenport et al 2016 Genomic landscape of the individual host response and outcomes in sepsis: a prospective cohort study. Lancet Respiratory Medicine 4, 259-271




Transcriptomics-led approach defines sepsis subphenotypes associated with response state and outcome

UK Genomic Advances in Sepsis (GAInS) study
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Unsupervised hierarchical cluster analysis 10% most variable genes in peripheral blood
leukocytes from sepsis due to community acquired pneumonia (discovery cohort n=265)

SRS1: pathway enrichment for endotoxin tolerance, T-cell exhaustion, down-regulation of

| -

SRS1 associated with
higher early mortality
and more severe illness
but not age, sex or
microbiology

Expression of seven
genes predictive of SRS
group membership

Clinical covariates
limited efficacy to
predict SRS



SRS in sepsis due to faecal peritonitis

<

S 40] °
ht o o

\9 X x o} ..O CO
~— 20_ < N o® o ® ®
_.C:l' xx 0 %:;J :o'.ogg o 6.%): b
P x o o O o000 P ¢ “®
¢ g Q SBad N, % @,
c OOOO% do ® 9 ® o
S * ©% o €00 ¢34 %0,
& @ Soo cee o e * °*
S -20 Ko g

O | %o o® R ) e % e _O
— ®00 cod

© °% o %% ©°

o e}

‘s —401 o ®

c [ ]

= e}

o

60 -40 -20 0 20 40 60
Principal component 1 (22.06%)

oA
KK

Sepsis due to pneumonia 0 0O Controls x

Sepsis due to faecal peritonitis o @

SRS main driver of variance in gene

expression rather than aetiology. Sepsis
due to faecal peritonitis (FP) (n=117) or
community acquired pneumonia (CAP)
(n=126), and non-septic controls (n=10)

100

Patients surviving (%)
N B ()] (o0}
o o o o
| | | |

o
|

—

— SRS1_FP
HR=4.8, 95% Cl 1.3-17.7, p=0.0096 —— SRS2_FP

0
Number
at risk

2 4 6 8 10 12 14
Survival (days from admission)

SRS1_FP 48 46 45 42 41 41 40 39
SRS2_FP 69 69 69 69 68 68 67 66

SRS and sepsis due to fecal
peritonitis shows same
association with mortality
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Burnham K et al 2017 Shared and Distinct Aspects of the Sepsis Transcriptomic Response to Fecal Peritonitis and Pneumonia. Am J Respir Crit Care Med 196, 328-339




Is knowledge of SRS potentially useful in guiding therapy?

Steroids and patient survival in sepsis

variation between trials with differences in the mortality effects

Approach

post-hoc analysis of a double-blind randomized clinical trial in septic shock (VANISH)
18 UK intensive care units

adult patients <6 hours of onset of shock, randomised to norepinephrine or vasopressin followed by hydrocortisone
or placebo

primary outcome survival at 28 days
SRS determined using pre-defined endotype definitions (expression of seven discriminant genes)

David Antcliffe  Katie Burnham Tony Gordon

Antcliffe DB et al. 2019 Transcriptomic Signatures in Sepsis and a Differential Response to Steroids. From the VANISH Randomized Trial.

Am J Respir Crit Care Med 199, 980-986.



SRS associated with outcome

176 patients, 83 assigned to SRS1 and 93 to SRS2 endotype

Patients receiving placebo , , _ ,
In patients who received placebo, mortality was lower in

> — SRS1T — SRS2 those with the SRS2 compared to SRS1

% 1] —— . e 28-day mortality SRS2 (8%) compared with SRS1 (37%)
_g L‘_\—\.L\_H_ e odds ratio 0-15 95%CI 0-03-0-76, p=0.02

O 0.75] e consistent with mortality differences associated with
o 0.5 SRS endotypes in GAInS
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Hydrocortisone use associated with increased mortality in SRS2 patients

Interaction between assignment to hydrocortisone or placebo, and SRS endotype (p=0-02)

Patients receiving placebo SRS1 patients SRS2 patients

>, —SRS1 —SRS2 e Hydrocortisone — Placebo
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» 0]
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Survival (days) Survival (days) Survival (days)
SRS1 OR 0-85 (95% Cl 0-30-2:43)  SRS2 OR 7-9 (95%Cl 1-6-39-9)

Findings support use of SRS in future biomarker guided trials of corticosteroids in septic shock



SRS assignment using different assays of gene expression
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Cano-Gamez E et al (2022). An immune dysfunction score for stratification of patients with acute infection based on whole blood gene expression.

medRxiv, 2022.2003.2017.22272427.



Constructing a cross-platform reference map of gene expression

Endotype Modality Cross-platform reference
‘ =§§§; (sepsis) Training : I\R/Iri\?zgg;y map of gene expression in
LAl B sRS3 E:zﬁ':))/) t A gPCR sepsis anchored with
(GAInS) Test set ; reference to three cohorts
0.0l 5 of healthy individuals

* Training set (n=909,
known SRS plus
healthy individuals)
and test set (n=2,355)
used to train random
forest classifiers
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SRSq: a quantitative sepsis response sighature score
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SepstratifieR: a machine learning framework for patient stratification

CONSTRUCTION OF THE SEPSTRATIFIER FRAMEWORK
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https://github.com/jknightlab/SepstratifieR

Mortality increases proportionally to SRSq

Microarray cohort RNA-seq cohort
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Mechanisms of Severe
Acute Influenza

Consortium (MOSAIC)

PCA plots based on
whole blood
transcriptomes —
graded illness
severity correlated
with SRSq
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Dunning J et al MOSAIC Investigators. Progression of whole-blood transcriptional signatures from interferon-induced to neutrophil-associated patterns in

severe influenza. Nat. Immunol. 19, 625-635 (2018)



SRSq and COVID-19
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SRSq and COVID-19

Cox model estimates
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An unbiased single-cell atlas of peripheral blood leukocytes in sepsis
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Andrew Kwok

Kwok A et al (2022). Identification of deleterious neutrophil states and altered granulopoiesis in sepsis. medRxiv, 2022.03.22.22272723v1.



An unbiased single-cell atlas of peripheral blood leukocytes in sepsis
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Sampling neighborhoods of cells
showed proportionally more
degranulating and S100A8/9 high
neutrophils in sepsis compared to
healthy controls, while all
mononuclear cell subsets except
plasmablasts were reduced
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An unbiased single-cell atlas of peripheral blood leukocytes in sepsis

Mature neutrophils 1
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Comparable differences were seen for CS versus HC, suggesting these were non-specific features of
inflammation. By contrast, higher abundance of the immature neutrophil populations was specific to sepsis

Andrew Kwok



Expansion of ILLR2+ immature neutrophils and neutrophil progenitors in SRS1
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Neutrophil differences in SRS
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Neutrophil differences in SRS
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Conclusions and future directions

Whole blood leukocyte transcriptomics enables subphenotyping with evidence for a disease endotype driven by
altered neutrophil biology and granulopoiesis informative for underlying immune response state, outcome and
therapy

Further mechanistic work is required to establish function and opportunities for targeted intervention

SRSq shows applicability across infectious aetiologies to date and is amenable to point of care testing (potentially 1hr
minute assay turnaround with automated nested multiplex PCR system)

Ongoing work with other —omic approaches including plasma proteomics and deep clinical phenotyping will likely
reveal further complexity in subphenotyping

Need to understand therapeutic potential and whether this is informative for a treatable trait
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